Skip to main content



LS-DYNA is widely used by the aerospace industry to simulate bird strike, jet engine blade containment, and structural failure.

Aerospace applications include:

  • Blade containment
  • Bird strike (windshield, and engine blade)
  • Failure analysis

       For Information regarding the LS-DYNA® Aerospace Working Group (AWG)

Automotive Crashworthiness & Occupant Safety

LS-DYNA is widely used by the automotive industry to analyze vehicle designs. LS-DYNA accurately predicts a car's behavior in a collision and the effects of the collision upon the car's occupants. With LS-DYNA, automotive companies and their suppliers can test car designs without having to tool or experimentally test a prototype, thus saving time and expense.

Specialized automotive features include:

  • Seatbelts
  • Slip rings
  • Pretensioners
  • Retractors
  • Sensors
  • Accelerometers
  • Airbags
  • Hybrid III dummy models
  • Inflator models

Earthquake Engineering - Soil-Structure Interaction

Large civil structures such as concrete dams, nuclear power plants, high-rise buildings and bridges are massive enough that their vibration due to earthquake excitation affects the motion of the soil or rock supporting them, which in turn further affects the motion of the structure itself. This interaction between the structure and the soil needs to be modelled accurately in order to design earthquake resistant structures and to correctly evaluate the earthquale safety of existing structures.  For further information (Click here).

Metal Forming

One of LS-DYNA's most widely used applications is sheetmetal forming. LS-DYNA accurately predicts the stresses and deformations experienced by the metal, and determines if the metal will fail. LS-DYNA supports adaptive remeshing and will refine the mesh during the analysis, as necessary, to increase accuracy and save time.

Metal forming applications include:

  • Metal stamping
  • Hydroforming
  • Forging
  • Deep drawing
  • Multi-stage processes


Pursuing its objective of solving coupled multiphysics problem, LS-DYNA R7 includes three new solvers :

  • Incompressible CFD
  • Electromagnetics
  • CESE/ Compressible CFD and Chemistry

Thus opening a wide range of new applications. In order to learn more and for access to documentation (Click here).


Other applications include:

  • Drop testing
  • Can and shipping container design
  • Electronic component design
  • Glass forming
  • Plastics, mold, and blow forming
  • Biomechanics (heart valves)
  • Metal cutting
  • Failure analysis
  • Sports equipment (golf clubs, golf balls, baseball bats, helmets)
  • Civil engineering (offshore platforms, pavement design)